1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
| import torch from torchvision import transforms from torchvision import datasets from torch.utils.data import DataLoader import torch.nn.functional as F import torch.optim as optim import matplotlib.pyplot as plt
batch_size = 64 transform = transforms.Compose([ transforms.ToTensor(), #把图像转化为张量 transforms.Normalize((0.1307,),(0.3081,)) #mniset常用均值标准差 ])
train_dataset = datasets.MNIST(root='../dataset/mnist', train = True, download = True, transform = transform) trainloader = DataLoader(train_dataset, shuffle = True, batch_size=batch_size) test_dataset = datasets.MNIST(root='../dataset/mnist', train = False, download = True, transform = transform) test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# 有GPU使用GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 定义卷积神经网络 class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5) self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5) self.pooling = torch.nn.MaxPool2d(2) self.fc = torch.nn.Linear(320, 10)
def forward(self, x): batch_size = x.size(0) x = F.relu(self.pooling(self.conv1(x))) x = F.relu(self.pooling(self.conv2(x))) x = x.view(batch_size, -1) x = self.fc(x) return x
# 实例化模型并移动到 GPU model = Net().to(device)
criterion = torch.nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(),lr=0.01,momentum=0.5) #momentum冲量
train_losses = [] test_accuracies = []
def train(epoch): running_loss = 0.0 for batch_size, data in enumerate(trainloader, 0): inputs, target = data inputs,target = inputs.to(device),target.to(device) # 把inputs和targets也传至GPU optimizer.zero_grad()
outputs = model(inputs) loss = criterion(outputs, target) loss.backward() optimizer.step()
running_loss += loss.item() if batch_size % 300 == 299: print('[%d, %5d] loss: %.5f' % (epoch + 1, batch_size + 1, running_loss / 300)) running_loss = 0.0
train_losses.append(running_loss / len(trainloader))
def test(): correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data images,labels = images.to(device),labels.to(device) outputs = model(images) _, predicted = torch.max(outputs.data, dim=1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = 100*correct /total test_accuracies.append(accuracy) print('Accuracy on test set: %d %%' % (100 * correct / total))
def plot_training_history(): epochs = range(1,len(train_losses)+1) plt.figure(figsize=(12,5))
plt.subplot(1,2,1) plt.plot(epochs,train_losses,label='Train loss',color='blue') plt.xlabel('Epochs') plt.ylabel('Loss') plt.title('Training Loss') plt.legend()
plt.subplot(1, 2, 2) plt.plot(epochs[::10], test_accuracies, label='Test accuracy', color='green') plt.xlabel('Epochs') plt.ylabel('Accuracy(%)') plt.title('Testing accuracy') plt.legend()
plt.tight_layout() plt.show()
if __name__ == '__main__': for epoch in range(50): train(epoch) if epoch % 10 == 9 : test()
plot_training_history()
|